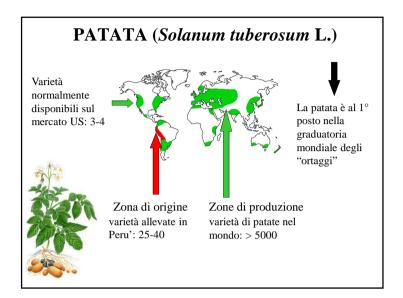
PATATA (Solanum tuberosum L.)

Papa (Perù: quechua)

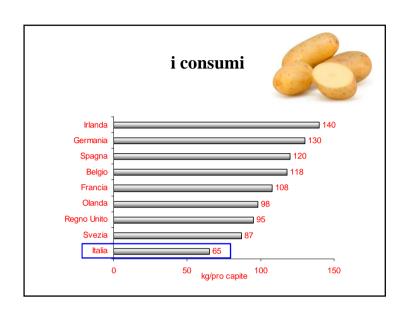

Pomme de terre

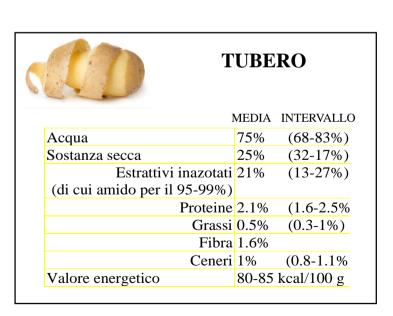
Potato

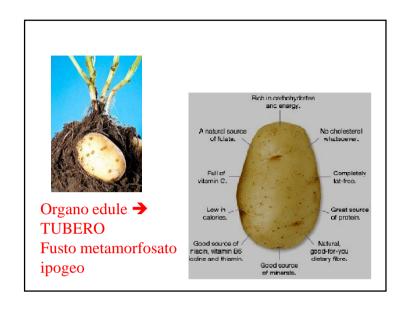
Kartoffeln

PATATA (Solanum tuberosum L.)

Nel **1570** portata in Europa dagli <u>Spagnoli</u>; nel **1610** arrivò in <u>Inghilterra e in Irlanda</u>, dove venne entrò nella dieta della povera gente.


La patata arrivò negli Stati Uniti attraverso l'Irlanda nel 1719.


Alla fine del XVIII secolo si diffuse in Europa, come cibo dei ceti più poveri.


Fino al **1780**, i Francesi ne evitarono il consumo credendo che causasse la <u>lebbra</u>. Fu Parmentier, farmacista agronomo nutrizionista, a diffonderne l'impiego in <u>Francia</u>, persuadendo il re Luigi XVI del valore di questo prodotto, che aveva consumato largamente durante la sua prigionia in <u>Prussia</u>, nella guerra dei sette anni.

Parmentier con colpi di <u>marketing</u> (Maria Antonietta che usava i fiori per decorarsi i capelli, decorazione sulle porcellane) fece diffondere *le potage parmentier*, minestra a base di patate.

Nel **1845-49** una paurosa <u>carestia</u> di patate (causata da epidemie da peronospora) colpì l'Europa e molti Irlandesi emigrarono negli Stati Uniti.

PATATA (Solanum tuberosum L.)							
	ACQUA	TRA 60) e 80%				
	patate Patate Patate purè fecola						
parte edibile g	83	89	100	100	100		
proteine totali g	2,10	0,90	1,60	2,02	0,20		
lipidi totali g	0,40	0	10,30	6,80	0,10		
glucidi totali g	20,80	17,60	27,20	13	88,80		
amido g	20,29	17,10	26,60	11,40	88,80		
glucidi solubili g	0,50	0,50	0,60	1,60	0		
energia kcal	90	71	201	118	335		
fibra aliment. g	2,10	2,40	3,40	1,18	0		
Colesterolo mg	0	0	0	20,50	0		

PATATA (Solanum tuberosum L.)

	patate	Patate novelle	Patate fritte	purè	fecola.
Calcio mg	10	9	11	38	20
Ferro mg	0,60	0,70	1,20	0,35	0,50
Sodio mg	7	27	35	17	0
Potassio mg	570	310	475	356	10
Fosforo mg	54	54	150	55	30
vitamina B1 mg	0,10	0,10	0	0,06	0
vitamina B2 mg	0,40	0,03	0	0,06	0
vitamina A mcg	3	0	0	79	0
vitamina PP mg	3,1	2,4	0	1,9	0
vitamina C	15	28	0	9	0

Tossicità dei GA di patata

Inibizione dell'enzima acetilcolinesterasi — interferisce nella conduzione degli impulsi nervosi

Azione sugli steroli delle membrane —— danneggia cellule del <u>tratto gastrointestinale</u> o di altri tessuti e organi nei quali i GA sono trasportati dopo l'assorbimento

La soglia di GA in tuberi di patata \longrightarrow 200 mg/kg PF (20 mg/100 g)

Secondo alcuni autori — 60-70 mg/kg PF

Fattori antinutrizionali in patata

La patata contiene alcuni alcaloidi, il più importante è la solanidina

solanidina + zuccheri — **glicoalcaloidi (GA)**Solanidina-glucosio-ramnosio — α-caconina
Solanidina-galattosio-glucosio-ramnosio — α-solanina

Composti intermedi

Altri fattori antinutrizionali in patata

Inibitori della tripsina

Interferiscono nella <u>digestione delle proteine</u> (in peptidi o singoli aminoacidi), quindi sul loro valore nutritivo. Vengono inattivati con il calore

Allergeni

Molte proteine termo-labili che possono indurre reazioni di <u>ipersensibilità</u> (es. dermatiti in seguito alla pelatura)

Patatina

la più importante proteina di riserva, ha alto valore nutrizionale ma può indurre <u>reazioni allergiche nei</u> <u>bambini</u>

www.ansci.cornell.edu/plants/toxicagents/toxagent.html

PATATA e INDUSTRIA ALIMENTARE

Prima del 1960, l'industria agro-alimentare forniva prevalentemente **chips, sticks, puré, gnocchi**. Oggi i prodotti sono oltre 40 tipi e in continuo aumento. Il consumo di prodotti di trasformazione industriale e il numero di derivati offerti sul mercato sono in espansione.

Incrementi in 15 anni

sticks	100%	Altre utilizzazioni
chips	40%	Produzione di:
patate novelle surgelate	60%	- Fecola
		- Amido
gnocchi surgelati	10%	- Destrina
		- Glucosio
		- Distillati

Varietà idonee alla trasformazione

Chips	Hermes, Enterstolz, Quarta, Agria, Kenzy
Sticks	Enterstolz, Quarta, Agria, Kenzy,
	Bea, Désirée (accrescimenti secondari),
	Diamant, Frisia, Herta, Kennebec, Lutetia,
	Bintje (fisiopatie)
Purée	Frisia, Lutetia, Kennebec, Desirée, Majestic
Prodotti appertizzati,	Primura, Monalisa, Arsy, Frisia, Avanti,
patate novelle, spicchi	Lutetia, Désirée
di patate surgelate	
Gnocchi	Désirée, Frisia, Kennebec, Lutetia, Bintje,
	Majestic, Primura, Monalisa, Arsy

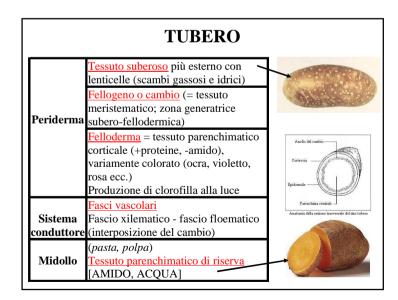
PATATA e INDUSTRIA ALIMENTARE

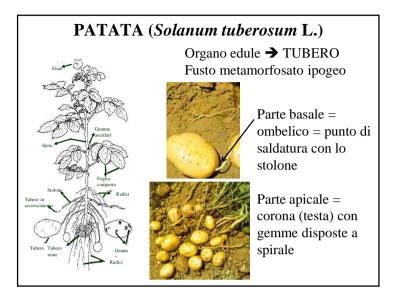
Tipi di prodotti di trasformazione industriale della patata

Disidratati	Pre-cotti	Surgelati	Da snacks	Sterilizzati
Puré	sticks	sticks	Sticks	patate intere
Gnocchi	frittelle	semifritte	Chips	patate salate
Crocchette	patate da arrosto	frittelle	Slim	patate da arrosto
Cubetti		gnocchi		patate in insalata
Fiocchi		crocchette	Snacks di	
Granuli		patate da	qualsiasi	
Farine		arrosto	forma e spe	cie
Fettuccine				
Semolino		Patate di		THE OR
Minestroni		qualsiasi		
Patate da		forma e		ALL DEP
arrosto		specie	Pormes de tane - F _allumettes	Pur rijes filites Poinmes de terre risculées
				88 3
				Nommos de teixe : Poinmos de teixe : soul angère : gaufrettes :

Destinazione del prodotto

- consumo diretto
 - novello (prodotto non completamente *abbucciato* e commercializzato subito dopo la raccolta)
 - comune (prodotto completamente *abbucciato* e commercializzato anche dopo conservazione)
- industria di trasformazione


Ciclo di coltivazione


- **precoce** (vernino-primaverile)
- **normale** (primaverile-estivo)
- bisestile (estivo-autunnale)

Epoca di impianto e raccolta a seconda del ciclo

Ciclo	Tipologia di		Epoca di
colturale	prodotto	impianto	raccolta
Precoce	novello	Gennaio –	Inizi maggio-
(Vernino-primaverile)		Febbraio	metà giugno
Normale	0000000	Marzo –	Fine giugno-
(Primaverile-estivo)	comune	Aprile	inizi settembre
Bisestile		Agosto –	Fine novembre-
(Estivo-autunnale)	novello	metà Settembre	inizi gennaio

Rese medie 35-45 t/ha

PATATA Parametri della qualità

A) Aspetti qualitativi esterni del tubero

- 1. Forma
- 2. Colore
- 3. Omogeneità dei calibri
- 4. Profondità degli occhi
- 5. Caratteristiche della buccia
- 6. Stato di maturazione dei tuberi
- 7. Pulizia dei tuberi
- 8. Sensibilità a malattie crittogamiche e ad alterazioni non parassitarie
- 9. Conservabilità

PATATA

Parametri della qualità

B) Aspetti qualitativi interni del tubero

- 1. Contenuto in sostanza secca
- 2. Contenuto in zuccheri riduttori
- 3. Imbrunimento enzimatico
- 4. Annerimento dopo la cottura
- 5. Tessitura

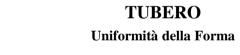
TUBERO Forma 1 - rotonda sferica 2 - rotonda appiattita 3 - piriforme 4 - ovale allungata 5 - ovale corta 6 - ovale appiattita 7 - ovale leggermente appuntita - Carattere varietale - Ambiente [terreno] - Coltivazione [N, P]

TUBERO

Differenze

Forma Dimensioni

Pasta


Tessuto suberoso esterno

Gemme

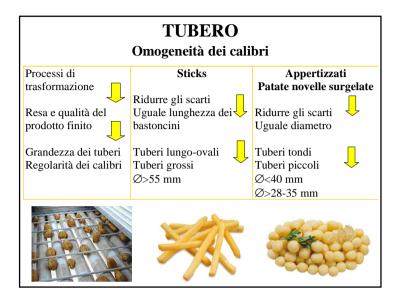
Colore, profondità, forma

Sbucciatura Affettatura

TUBERO Uniformità delle dimensioni La ripartizione in calibri dipende dalla varietà ed è influenzata dalle condizioni di coltivazione **□**Ø<3,5 cm ■Ø3.5-5.5 cm **□** Ø>5,5 cm conv bio Merit conv

TUBERO

Profondità e numero degli occhi



- Gemme (1 principale + 2 secondarie) entro cavità (occhi)
- Numero: 12-15 per tubero Ø>40mm
- Disposizione: superficiale

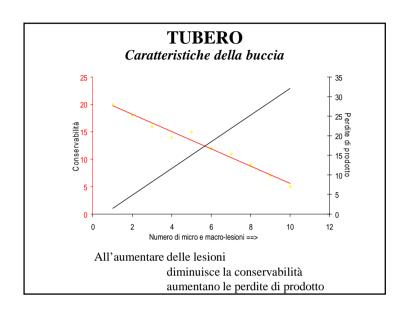
profonda

(maggiore profondità → maggiori perdite per sbucciatura)

TUBERO Caratteristiche della buccia

Caratteri varietali

- Colore
- Consistenza
 - resistente


diminuzione di danni meccanici (raccolta, immagazzinamento)

- sottile
- riduzione delle perdite di prodotto per pelatura
- Aspetto (liscia)
- 1 Perdite di prodotto durante le operazioni di trasformazione (sbucciatura, affettatura)
- 2 Diminuzione di qualità del prodotto trasformato

Pulizia dei tuberi Più difficile e costosa la conservazione di tuberi sporchi Effetti negativi sulla qualità del trasformato

TUBERO

Stato di maturazione

Tuberi maturi → + resistenti ai danni meccanici Maggiore contenuto di sostanza secca Minore concentrazione di zuccheri riduttori

	Frazione		Zuccheri	Val. energetico
	edule %	%	%	kcal/100 g t.q.
Patata novella	96	82	16	67
Patata comune	83	78	18	85

Maturazione commerciale

Patata comune: buccia suberificata, foglie secche Patata novella: buccia che si "pela", foglie verdi

TUBERO

Conservazione

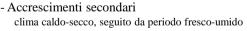
Conservabilità

Industria → allungare il periodo di lavorazione

Cultivar

Con elevata dormienza delle gemme Con contenuto di zuccheri riduttori sempre < ai limiti per i diversi prodotti

TUBERO Conservazione


≅-3°C	Congelamento → disfacimento tessuti					
-3÷0°C	Microlesioni → striature brune corticali					
	Sapore amaro					
0÷4°C	Indolcidimento per formazione di zuccheri					
	riduttori da idrolisi dell'amido					

Condizioni ottimali				
T 2÷7°C				
UR 85÷90%	UR bassa = calo-peso e			
	raggrinzimento dei tuberi			
Circolazione aria	eliminazione prodotti gassosi del			
	metabolismo			
No Luce	inverdimento dei tuberi, aumento di			
	alcaloidi=solanina			

TUBERO

Alterazioni non parassitarie (fisiopatie)

Pre-germogliamento
 prodotti anti-germoglianti: idrazide maleica,
 alcool nonilico, isopropilfenilcarbamato,
 cloro-isopropilfenilcarbamato
 irradiazione dei tuberi con deboli dosi raggi gamma

-Cuore cavo

accumulo CO₂ e carenza O₂ (in lunga conservazione,
per scarsa ventilazione o innalzamento temperature)

- Maculatura ferruginea Danni in campo e in magazzino Riduzione di resa e qualità del trasformato

TUBERO

Sensibilità a malattie crittogamiche

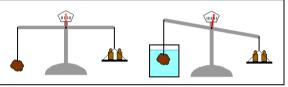
Peronospora Phytophtora
Cancrena Phoma
Marciume scuro Fusarium
Marciume molle Pythium

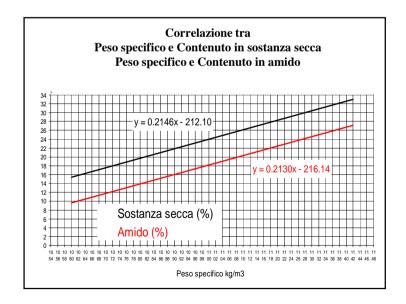
PATATA

Parametri della qualità
Aspetti qualitativi interni del tubero

- Contenuto in sostanza secca
- Contenuto in zuccheri riduttori
- Imbrunimento enzimatico
- Annerimento dopo la cottura
- Tessitura

Contenuto percentuale in sostanza secca


Misura diretta

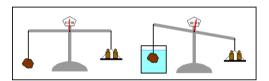

essiccazione in stufa di un campione tagliato a fette Sostanza secca % = Peso secco/Peso fresco x 100

Misura indiretta (STIMA)

attraverso la determinazione del peso specifico con bilancia idrostatica (campione di 5 kg)

$$Peso specifico = \frac{P_{aria}}{(P_{aria} - P_{acqua})}$$

Contenuto percentuale in sostanza secca


Peso specifico: valori compresi tra <u>1060 e 1142 kg/m³</u>

Correlazione tra

Peso specifico e Contenuto in sostanza secca

Peso specifico e Contenuto in amido

p.s. $1080-1105 \Rightarrow$ s.s. $20-25\% \Rightarrow$ amido 14-19%

Per ottenere 1 kg di chips

- → 3 kg di patate con 25% di s.s.
- → 5 kg di patate con 15% di s.s.

Contenuto in zuccheri riduttori Glucosio+fruttosio

Imbrunimento dei derivati fritti (chips, sticks)

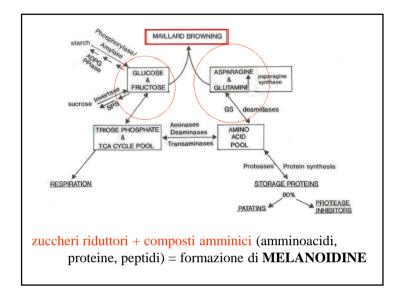
Due tipi di reazione

1 - caramellizzazione

(imbrunimento non enzimatico e <u>ossidativo</u>) - combustione degli zuccheri con perdita d'acqua e rimanenza di carbonio (che quando è puro è nero)

2 – reazione di Maillard

(imbrunimento non enzimatico non ossidativo)


L'acrilammide

Si forma negli alimenti, solitamente nei **prodotti amidacei**, durante la <u>cottura</u> (frittura, cottura al forno e alla griglia) ad <u>alta temperatura (> 120°C)</u>. La presenza di acrilammide è stata rilevata in patatine, patate fritte a bastoncino, pane, biscotti e caffè.

E' originato da alcuni zuccheri e da un amminoacido (asparagina), presenti per natura negli alimenti.

La sua scoperta negli alimenti risale al 2002. Una dichiarazione dell'EFSA (European Food Safety Authority) del 2005 ha rivelato che l'acrilammide rappresenta una preoccupazione sanitaria, data la sua cancerogenicità e genotossicità.

Una valutazione dei rischi condotta dal Comitato congiunto di esperti FAO/OMS sugli additivi alimentari (JFECA) ha concluso che l'acrilammide può destare preoccupazioni per la salute umana ed è necessario prendere misure per ridurre l'esposizione.

Perché in particolare le patate?

Le patate contengono molta **asparagina** 2-4,5 g/kg sul peso fresco (10-20 g/kg s.s.)

• Circa il 50% degli amminoacidi è allo stato libero (non incorporati in proteine) e l'Asparagina è quasi la metà di questi

Circa 100 volte di <u>più della farina di frumento</u> Lo stesso trattamento termico produce 100 volte la quantità di acrilammide

− la crosta nera del pane: < 200 ppb (parti per miliardo)

– la crosta nera della patata: 2000-10.000 ppb

1000 ppb di acrilammide nelle patate con la conversione di solo 1‰ di asparagina

11

Gli alimenti più ricchi di acrilammide

30~g di crostini di pane (1000 ppb) $30~\mu g$ 100~g di pane con spezie (80 ppb) $15~\mu g$ 200~g di pane (50 ppb) $10~\mu g$ una tazza di caffè $2~\mu g$ 100~g di pasta (20 ppb) $2~\mu g$

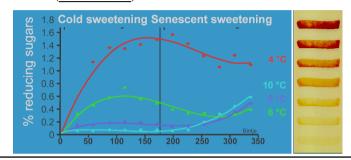
100 g di patatine chips (1500 ppb) 150 μg 250 g di patatine fritte a stick (800 ppb) <math>200 μg 300 g di patate arrosto (3000 ppb) 1000 μg

Imbrunimento non enzimatico non ossidativo

Contenuto in zuccheri riduttori Glucosio+fruttosio

Composti di colore bruno scuro Intensità di colore = f(concentrazione di <u>zuccheri</u>, <u>amminoacidi</u>)

Differenze varietali
Conservazione → basse temperature

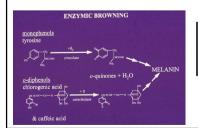

Bassa presenza di zuccheri riduttori (0.4-0.5% → 1%)

L'indolcimento da freddo

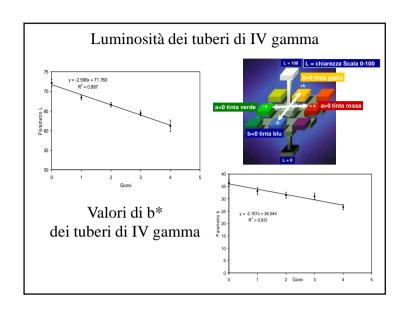
Scissione idrolitica dell'amido in saccarosio, e di questo in glucosio e fruttosio.

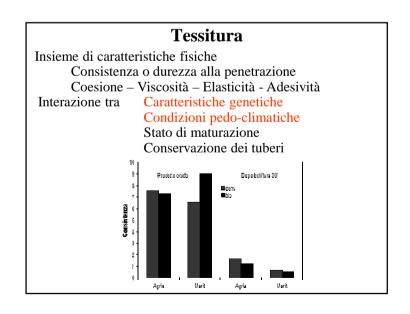
Si verifica in conservazione prolungata a temperature <6-7°C

Al taglio i tuberi presentano <u>aree traslucide</u>. Alla cottura, gli zuccheri reagiscono con gli aminoacidi dando la Reazione di Maillard (imbrunimento).



Imbrunimento enzimatico


Ossidazione di <u>fenoli</u>: richiede la presenza di O₂ e di vari enzimi


Interessa i polifenoli dei tuberi sbucciati e tagliati all'aria che vengono ossidati a composti aromatici di colore bruno

Prevenzione: Ridurre il contatto con O₂ Impiego di prodotti anti-ossidanti

- Chlorogenic acid constitutes up to 90% of the tuber polyphenols.
 Others polyphenols found in potatoes are
- II. 5-O-caffeoylquinic
- III. 3,4-dicaffeoylquinic
 IV. 3,5-dicaffeoylquinic acids

Annerimento dopo la cottura

Dopo cottura → in fase di raffreddamento

Tuberi Bolliti

Cotti a vapore

[sticks, patate disidratate]

Reazione tra acido clorogenico + Fe

Ossidazione
formazione di acido ferrodiclorogenico (nero)

Tessitura

Sticks e chips

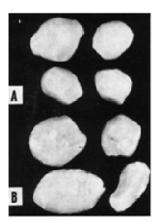
Tessitura compatta = croccantezza resistenza alla frantumazione

Prodotti appertizzati e patate da arrosto

Tessitura molto compatta

Purée

Tessitura di tipo farinoso


Caratteristiche generali dei tuberi per destinazione

Patate da mensa

- Struttura non eccessivamente compatta né farinosa
- Sapore tipico

Patate da industria

- Proprietà organolettiche idonee
- Uniformità di pezzatura
- Tuberi globosi od ovoidali con occhi superficiali
- Polpa a struttura compatta
- Facile pelabilità
- PASTA GIALLA (meno che per patate da purée)
- Lunga conservabilità
- Assenza di difetti (lesioni, malattie, tubercoli ecc.)

A) Patate da insalata Struttura estremamente fina, soda, NON FARINOSA, umida Tenuta alla cottura

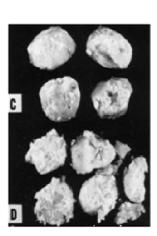
Uso: insalate, minestroni

B) Patate per tutti gli usi struttura fine Tuberi di media consistenza, debolmente farinosi, poco umidi

Usi molteplici

Metodo dei tipi di cottura o tipi di utilizzazione dei tuberi

E.A.P.R. → European Association of Potato Research


4 tipi di prodotto

Caratteristiche dei tuberi

- Compattezza
- Farinosità
- Struttura
- Umidità
- Sapore

ecc.

- A) Insalate, minestroni
- B) Usi molteplici
- C) Preparazione di purée
- D) Non adatte al consumo

C) Patate che si aprono dopo cottura

Polpa tenera, farinosa, piuttosto asciutte, a struttura grossolana

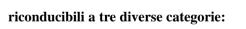
Preparazione di purée

D) Patate alquanto farinose, che si sfaldano dopo cottura, asciutte e di sapore ruvido

Non adatte al consumo

Principali prodotti

• Fritti


chips, sticks, slim (bastoncini sottili), semifritte surgelate

Snacks

sfogliatine, bastoncini sottili (slim) → prodotti addizionati con formaggio o essenze di cipolla, peperoncino, prosciutto, ecc.

Prodotti surgelati di patata

- 1- prodotti a varie tipologie di taglio prefritti
- 2- prodotti a varie tipologie di taglio non prefritti
- 3- prodotti a base di purea

Principali prodotti

• Disidratati

fiocchi, granuli, farine preparazione di pane di patata pizze, gnocchi, purée

• Appertizzati

patate pre-pelate, patate al naturale in scatola

• Surgelati

patate pre-pelate, patate al naturale, bastoncini

Caratteristiche principali dei tuberi secondo l'impiego culinario e del prodotto trasformato

Prodotti	Calibro	Forma	Peso	Sostanza	Zuccheri
	mm		specifico	secca %	riduttori
					% sulla s. f.
Prodotti fritti					
chips	40-60	tondo o tondo-ovale	1,080-1,105	20-25	<0,25
sticks	>55	lungo-ovale	1,080-1,105	20-25	<0,50
Appertizzali	<40	tondo o tondo-ovale	1,070-1,075	18-19	<0,50
Patate novelle surgelate	26-35	tondo o tondo-ovale	1,070-1,075	18-19	<0,50
Spicchi di patate surgelate	35-45	tondo o tondo-ovale	1,070-1,075	18-19	<0,50
Fiocchi per puré	>40	qualsiasi	1,080-1,105	20-25	<1,00
Prodotti disidratati	>30	qualsiasi	1,080-1,105	20-25	<1,00
Gnocchi	>40	qualsiasi	1,080-1,090	20-23	<0,50
Patate cotte a vapore	35-65	qualsiasi	1,070-1,075	18-19	<0,50
Per minestrone	>40	qualsiasi	1,070-1,075	18-19	<1,00

CARATTERISTICHE DELLA MATERIA PRIMA

Un'unica tipologia di materia prima individuata da caratteristiche ben precise:

▶appartenenza a varietà vocate

le varietà idonee a processi di trasformazione industriale possono essere identificate dalla seguente lista: Primura, Monalisa, Agata, Lutetia, Asterix, Agria, Santana, Santé

contenuto in sostanza secca

il limite è 19% e può essere rilevato con l'utilizzo di apposito idrometro che mediante misurazione del peso specifico fornisce conversione in % di amido e di s.s.

contenuto in zuccheri riduttori deve essere compreso fra lo 0 e l'1%

Valutato mediante l'utilizzo di cartine colorimetriche (metodo Tes-Tape) per il rilievo del glucosio presente

marciumi secchi o umidi

causati da attacchi fungini o batterici che possono interessare totalmente o parzialmente i tuberi Suddivisibili in secchi ascrivibili ad attacchi fungini (*Fusarium, Phitophtora*) e umidi o molli da batteri generalmente appartenenti al genere *Erwinia* Il quantitativo di tali tuberi deve essere inferiore al 2% in peso del campione esaminato

► tuberi gravemente deformati ("rinati")

con deformazioni derivanti da <u>arresti e riprese di crescita</u> imputabili a squilibri idrici e termici nel terreno tuberi anomali con <u>livello di maturazione incompleto</u> prodotto finito gravemente compromesso sotto il profilo organolettico e merceologico a causa del basso contenuto di <u>sostanza secca</u> e dell'elevato contenuto in <u>zuccheri riduttori</u>

► assenza o bassa presenza di danni da insetto

Il quantitativo di tali tuberi deve essere <u>inferiore al 2%</u> in peso del campione esaminato

▶ difettosità sottopelle

qualsiasi tipo di macchia sottocutanea determinata da danni meccanici o altro

Tale difetto è rilevabile mediante pelatura di 100 tuberi; il quantitativo di tuberi presentante macchia non deve essere superiore al 40% in peso del campione esaminato

▶ difettosità interne

costituite da "cuore cavo", "cuore nero" e "maculatura ferruginea".

Evidenziabili solamente sottoponendo i tuberi a verifiche mediante tagli longitudinali e trasversali.

Tali difetti devono essere assenti

CONSERVAZIONE MATERIA PRIMA

Se non utilizzata immediatamente al momento della consegna, la materia prima può essere conservata in <u>cassoni</u> o in <u>cumuli</u> alla rinfusa.

Entrambe le modalità possono realizzarsi in celle per <u>frigoconservazione</u> a temperatura controllata (non inferiore a 8°C) o in condizioni di <u>ventilazione notturna</u> con aria ambiente sfruttando canali di ventilazione che attraversano il prodotto, in magazzini totalmente o parzialmente chiusi o sotto tettoie, ma comunque con prodotto al riparo dalla luce.

Materia prima Calibratura Separazione corpi estranei Pelatura Esempio di Spazzolatura e lavaggio Selezione diagramma di Taglio flusso di Calibratura produzione di Selezione ottica Scottatura sticks di patate prefritti e surgelati Preraffreddamento Confezionamento Conservazione

Chips

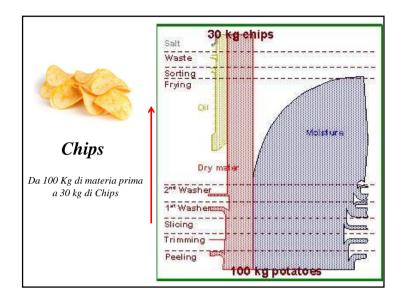
3-6 settimane a temperatura di 15-20°C

•sbucciatura

in correnti di vapore, in soluzioni di soda riscaldata oppure per abrasione in speciali cilindri

•rifinitura

sbucciatrici con cilindri rotanti muniti di deflettori per asportare le parti non sbucciate


•lavaggio

•taglio → fettine di 1,0-1,2 mm di spessore

•lavaggio

asportare amido e zuccheri in superficie evitare che si incollino durante la cottura

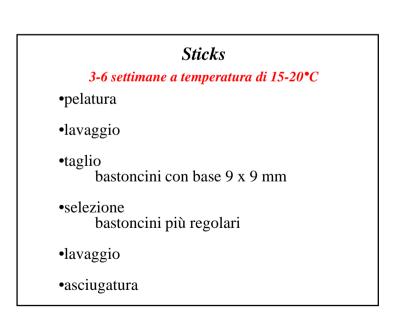
•asciugatura in correnti d'aria

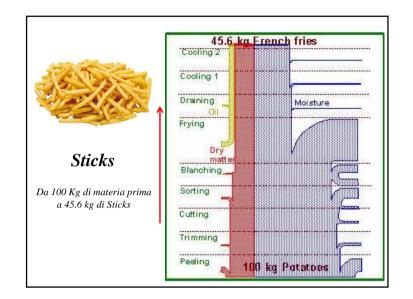
Chips

•cottura

friggitrici continue in olio di semi (arachide o soia), addizionati spesso di <u>prodotti antiossidanti (</u>bisolfiti, citrati, ac. citrico ecc.)

170°C per 2-3 minuti


(all'arresto della formazione di schiuma)


rapporto fra patate ed olio intorno ad 1:20

- •sgocciolatura
- •essiccazione
- •cernita del prodotto
- •salatura (1-3% di sale)
- ${\color{red}\bullet} impacchet tamento$

buste a chiusura ermetica (conservazione per 4-5 settimane)

Assorbimento di olio Chips meno sottili (2.5 g/chip) Chips più sottili (1.5 g/chip) ☐fried for 1 m in ☐fried for 2 m in ☐fried for 1 m in ☐fried for 2 m in 40 120 100 Oil (% d.b.) 30 Oil (% d.b.) 80 20 60 40 2 Figure 2—Oil absorption by thick potato chips (2.5 g/chip) when fried at 170 °C for 1 and 2 min: (1) 100% potato flake (PF) mixture, (2) 80% PF and 20% potato starch (PS) mixture, and (3) 80% PF and 20% pregelatinized potato starch (PFS) mixture. Data are mean values z standard error (r = 3). Figure 1—Oil absorption by thin potato chips (1.5 g/chip), when fried at 170 °C for 1 and 2 min: (1) 100% potato liake (PF) mixture, (2) 80% PF and 20% potato starch (PS) mixture, and (3) 80% PF and 20% PPS mixture. Data are mean values ± standard error (n = 3).

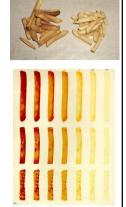
- •pre-fittura olio di palma o di arachide per circa 4'
- •sgocciolatura
- •essiccazione
- •conservazione 10-15 giorni a temperatura di 0-2°C surgelazione a -30°C conservazione a -18°C per circa 2 mesi
- •frittura definitiva 180°C per 2'

Valutazione dei prodotti fritti e semifritti

Scala colorimetrica proposta da E.A.P.R.

(European Association of Potato Research) da 1 a 9

1 colore molto scuro


9 colore molto chiaro valori normali da 6 a 8

Scala colorimetrica da 1 a 10 (USDA)

1→ colore più chiaro

10 → colore più scuro valori preferibili 1 e 2

Prodotti disidratati

Patate a pasta bianca con alto contenuto in sostanza secca

- pelatura
- lavaggio
- essiccazione di una purea di patate precotte a vapore per circa 20'

successiva lavorazione

- fiocchi, granuli, polvere, farina
- preparazione

gnocchi, pane di patata, pizze, crocchette

Valutazione dei prodotti fritti e semifritti

Altri esami

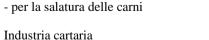
Metodi degustativi

(croccantezza, aspetto interno, contenuto in grasso, sapore, ecc.)

Grassi

<40 % nei fritti <10-15 % nei semifritti

Umidità residua


2-3% nei fritti 60-65% nei semifritti

La fecola di patate è una farina composta dall'amido delle patate, viene usata in cucina come addensante e dall'industria per produrre glucosio e alcool.

- polvere stemperata di patate con successivo lavaggio in setacci
- asciugatura dell'amido che si deposita nelle vasche di lavaggio
- essiccazione

Usi alimentari

- pasticceria (crema e biscotti)
- conserve disidratate di ortaggi
- per la salatura delle carni

Fabbricazione di colle Industria chimica per la produzione di destrine, glucosio, alcool