stranger
| Inviato il: 8/3/2011,20:10
|
C'è qualcuno che sa come compilare questo algoritmo fatto in pascal ?
Oppure se c'è qualcuno che me lo compila e lo mette on line, cosi che possa prenderlo ?
grazie !.
CODICE Program Oszillator_im_DFEM_mit_OVER_UNITY; {$APPTYPE CONSOLE} uses Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs;
Var epo,muo : Double; {Constants of nature} c : Double; {speed of propagation of the waves and fields} D : Double; {Hooke’s spring force constant} m1,m2 : Double; {Masses of both bodides} Q1,Q2 : Double; {electrical charges of both bodides } RLL,FL : Double; {relaxed length of the unloaded helical spring} r : Double; {distance with regard to the finite speed of propagation of the fields} diff,ds,ds1 : Double; {some variables} FK1,FK2 : Double; {spring forces acting on body No.1 and 2} FEL1,FEL2 : Double; {electrical forces acting on body No.1 and 2} delt : Double; {time-steps for the motion of the bodies and fields} x1,x2,v1,v2 : Array [0..200000] of Real48; {time, position, velocity of the bodies} t : Double; {variable from the propagation-time of the fields} a1,a2 : Double; {acceleration of the bodies} i : Integer; {counter-variable} tj,ts,tr : Extended;{variable for the determination of the field-propagation-duration in part 3} ianf,iend : Integer; {begin and end of the time under analysis} Abstd : Integer; {distance of the data-points being plotted} Ukp,UkpAlt : Double; {for part 3} unten,neu : Boolean; {for part 3} AmplAnf,AmplEnd : Double; {for the determination of the enhancement of amplitude} Reib : Double; {force of friction} P : Double; {machine power} Pn : Double; {for the determination of the average value of the machine power} Procedure Wait; Var Ki : Char; begin Write('<W>'); Read(Ki); Write(Ki); If Ki='e' then Halt; end;
Procedure Excel_Datenausgabe(Name:String); Var fout : Text; {file to write a results for excel} Zahl : String; i,j : Integer; { counter-variables} begin {data-output for excel:} Assign(fout,Name); Rewrite(fout); {open the file} For i:=ianf to iend do {from "plotanf" to "plotend"} begin If (i mod Abstd)=0 then begin { the first argument is the time:} Str(i*delT:10:5,Zahl); For j:=1 to Length(Zahl) do begin {replace decimal-points by commata} If Zahl[j]<>'.' then write(fout,Zahl[j]); If Zahl[j]='.' then write(fout,','); end; Write(fout,chr(9)); {Tabulator for data-separation} { The first function is the Position of particle No. 1:} Str(x1[i]:10:5,Zahl); For j:=1 to Length(Zahl) do begin { replace decimal-points by commata } If Zahl[j]<>'.' then write(fout,Zahl[j]); If Zahl[j]='.' then write(fout,','); end; Write(fout,chr(9)); {Tabulator for data-separation } { second column: Position of body 2:} Str(x2[i]:10:5,Zahl); For j:=1 to Length(Zahl) do begin { replace decimal-points by commata } If Zahl[j]<>'.' then write(fout,Zahl[j]); If Zahl[j]='.' then write(fout,','); end; Write(fout,chr(9)); {Tabulator for data-separation } { third column: velocity of body 1:} Str(v1[i]:10:5,Zahl); For j:=1 to Length(Zahl) do begin { replace decimal-points by commata } If Zahl[j]<>'.' then write(fout,Zahl[j]); If Zahl[j]='.' then write(fout,','); end; Write(fout,chr(9)); {Tabulator for data-separation } { fourth column: velocity of body 2:} Str(v2[i]:10:5,Zahl); For j:=1 to Length(Zahl) do begin { replace decimal-points by commata } If Zahl[j]<>'.' then write(fout,Zahl[j]); If Zahl[j]='.' then write(fout,','); end; Writeln(fout,''); {line-feed for data-separation} end; end; Close(fout); end;
Begin {Main program} { Initialisation: } D:=0; r:=0; {Avoid Delphi-Messages} epo:=8.854187817E-12;{As/Vm} {Magnetic field-constant } muo:=4*pi*1E-7;{Vs/Am} {elektric field-constant } c:=Sqrt(1/muo/epo);{m/s} {speed of light } m1:=1;{kg} {mass of body 1} m2:=1;{kg} {mass of body 2} delt:=1E-3;{sec.} {Equidistant time-steps for the calculation of the motion} ianf:=0; iend:=100000; {number of the first and the last time.-step } Abstd:=2; {to plot every Abstd-th data-point}
Writeln('Oscillator in DFEM with OVER-UNITY:'); Writeln('epo=',epo:20,'; muo=',muo:20,'; c=',c:20); Writeln('m1,m2=',m1:15,', ',m2:15,'; D=',D:15); Writeln;
{ Begin of the Main Program} { Part 1 had been preparations for the program-development, not interesting any further}
{ Teil 2: Test -> anharmonic oscillation, with electrical charge or magnet: STATIC !} For i:=ianf to iend do begin x1[i]:=0; x2[i]:=0; {assign the positions to zero} v1[i]:=0; v2[i]:=0; {assign the velocities to zero} end; i:=0; {t:=i*delT;} {time in steps of delt.} Q1:=2.01E-5{C}; Q2:=2.01E-5{C}; {electrical charge of both bodies} D:=0.20;{N/m} {Hooke’s spring force constant } RLL:=6.0;{m} {length of the spring without force} {rest-position of the bodies: +/-RLL/2} x1[0]:=-3.8; x2[0]:=+3.8; {starting-positions of the bodies} v1[0]:=00.00; v2[0]:=00.00; { starting-velocities of the bodies } {Now we begin the determination of the motion, step-by-step:} Repeat i:=i+1; FL:=x2[i-1]-x1[i-1]; {length of the spring} FK1:=(FL-RLL)*D; {spring-force, positive pulls to the right side, negative to the left} FK2:=(RLL-FL)*D; {spring-force, positive pulls to the right side, negative to the left} FEL1:=0; FEL2:=0; If FL<=1E-20 then begin Writeln; Writeln('Exception: Spring too much compressed in Part 2 at step ',i); Excel_Datenausgabe('XLS-Nr-02.DAT'); Writeln('Data have been stored at "XLS-Nr-02.DAT", then termination of algorithm.'); Wait; Halt; end; If FL>1E-20 then begin FEL1:=+Q1*Q2/4/pi/epo/FL/Abs(FL); {electrostatic force between Q1 & Q2} FEL2:=-Q1*Q2/4/pi/epo/FL/Abs(FL); {electrostatic force between Q1 & Q2} end; {Check:} If i=1 then Writeln('El.-force: ',FEL1,' and ',FEL2,' Newton'); {Check:} If i=1 then Writeln('Spring-force: ',FK1, ' and ',FK2,' Newton'); a1:=(FK1+FEL1)/m1; a2:=(FK2+FEL2)/m2; {acceleration of the bodies} v1[i]:=v1[i-1]+a1*delt; {alteration of the speed of body 1} v2[i]:=v2[i-1]+a2*delt; {alteration of the speed of body 2} x1[i]:=x1[i-1]+v1[i-1]*delt; {alteration of the position of body 1} x2[i]:=x2[i-1]+v2[i-1]*delt; {alteration of the position of body 2} Until i=iend; Excel_Datenausgabe('XLS-Nr-02.DAT'); {position and speed as a function of time} Writeln('Part 2 is ready.'); { Part 3: Test -> Propagation of the fields with finite speed} P:=0; Pn:=0; {assign the machine-power to zero} For i:=ianf to iend do begin x1[i]:=0; x2[i]:=0; {assign the positions to zero} v1[i]:=0; v2[i]:=0; {assign the velocities to zero} end; i:=0; {counter for the position and velocity} c:=1.4; {Sqrt(1/muo/epo);{m/s} {assign the speed of propagation of the fields here} Q1:=3E-5{C}; Q2:=3E-5{C}; {electrical charge of the bodies} D:=2.7;{N/m} { Hooke’s spring force constant } RLL:=8.0;{m} {length of the spring without force} {rest-position of the bodies: +/-RLL/2} x1[0]:=-3.0; x2[0]:=+3.0; {starting-position of the bodies} v1[0]:=00.00; v2[0]:=00.00; {starting-velocity of the bodies } Ukp:=x2[0]; UkpAlt:=Ukp; unten:=true; neu:=true; {first reversal point} Writeln('reversal-point: ',Ukp:12:6,' m '); {Now we begin the determination of the motion, step-by-step:} Repeat i:=i+1; FL:=x2[i-1]-x1[i-1]; {length of the spring} FK1:=(FL-RLL)*D; {spring-force, positive pulls to the right side, negative to the left} FK2:=(RLL-FL)*D; {spring-force, positive pulls to the right side, negative to the left} { determination of the Field-motion-duration, Field-motion-distance, and Field-strength} FEL1:=0; FEL2:=0; tj:=i; ts:=i; {i mesures the time} {Start the iteration with natural figures:} { Writeln('tj=',tj*delt:9:5,' ts=',ts*delt:9:5,'=>',x2[Round(tj)]-x1[Round(ts)]-c*(tj-ts)*delt:9:5); } Repeat ts:=ts-1; diff:=x2[Round(tj)]-x1[Round(ts)]-c*(tj-ts)*delt; { Writeln('tj=',tj*delt:9:5,' ts=',ts*delt:9:5,'=>',diff:9:5); } Until ((diff<0)or(ts<=0)); If diff>=0 then {before the motion begin at t=0, the bodies have been in rest.} begin r:=x2[Round(tj)]-x1[0]; { Writeln('diff>=0; r=',r); } end; If diff<0 then {linear interpolation to determine the fraction after the comma} begin { Writeln('diff<0 ==> tj=',tj,' ts=',ts); Write('x2[',Round(tj),']=',x2[Round(tj)]:13:9); Write(' und x1[',Round(ts),']=',x1[Round(ts)]:13:9); Write(' und x1[',Round(ts+1),']=',x1[Round(ts+1)]:13:9); Writeln; } ds:=x2[Round(tj)]-x1[Round(ts)]-c*(tj-ts)*delt; ds1:=x2[Round(tj)]-x1[Round(ts+1)]-c*(tj-(ts+1))*delt; { Writeln('ds1=',ds1:13:9,' und ds=',ds:13:9); } tr:=ts*delt+delt*(-ds)/(ds1-ds); {for linear interpolation} tj:=tj*delt; { Write('tj=',tj:13:9,' und tr_vor=',tr:13:9); } tr:=(tj-tr); {interpolated moment of field-emission} r:=c*tr; {interpolated real distance} { Writeln(' und tr=',tr:13:9,' und r=',r:13:9); } end; If r<=1E-10 then begin Writeln; Writeln('Exception: Spring too much compressed in Part 3 at step ',i); Excel_Datenausgabe('XV-03.DAT'); Writeln('Data have been stored at "XV-03.DAT", then termination of algorithm.'); Wait; Halt; end; If r>1E-10 then {Now insert data into Coulomb’s law:} begin FEL1:=+Q1*Q2/4/pi/epo/r/Abs(r); {electrostatic force between Q1 & Q2} FEL2:=-Q1*Q2/4/pi/epo/r/Abs(r); { electrostatic force between Q1 & Q2} end; Reib:=0.2; {friction: computation begins here.} If i>=10000 then begin If FEL1>0 then FEL1:=FEL1-Reib; If FEL1<0 then FEL1:=FEL1+Reib; If FEL2>0 then FEL2:=FEL2-Reib; If FEL2<0 then FEL2:=FEL2+Reib; P:=P+Reib*Abs(x1[i]-x1[i-1])/delt; Pn:=Pn+1; end; {Friction: computation ends here.} {Check:} If i=1 then Writeln('El.-force: ',FEL1,' and ',FEL2,' Newton'); {Check:} If i=1 then Writeln('spring-force: ',FK1, ' and ',FK2,' Newton'); a1:=(FK1+FEL1)/m1; a2:=(FK2+FEL2)/m2; {acceleration of the bodies} v1[i]:=v1[i-1]+a1*delt; {alteration of the speed of body 1} v2[i]:=v2[i-1]+a2*delt; {alteration of the speed of body 2} x1[i]:=x1[i-1]+v1[i-1]*delt; {alteration of the position of body 1} x2[i]:=x2[i-1]+v2[i-1]*delt; {alteration of the position of body 2} { If (i mod 1000)=0 then Writeln ('Feldstaerke= ',Q1/4/pi/epo/r/Abs(r),' N/C'); } { determination of the reversal-points, for determination of the amplitude’s-enhancement:} If unten then begin If x2[i]>Ukp then begin Ukp:=x2[i]; end; If x2[i]<Ukp then begin Writeln('reversal-point: ',Ukp:12:6,' m , amplitude=',Abs(UkpAlt-Ukp)); If Not(neu) then AmplEnd:=Abs(UkpAlt-Ukp); If neu then begin AmplAnf:=Abs(UkpAlt-Ukp); neu:=false; end; unten:=Not(unten); UkpAlt:=Ukp; end; end; If Not(unten) then begin If x2[i]<Ukp then begin Ukp:=x2[i]; end; If x2[i]>Ukp then begin Writeln('reversal-point: ',Ukp:12:6,' m , amplitude=',Abs(UkpAlt-Ukp)); If Not(neu) then AmplEnd:=Abs(UkpAlt-Ukp); If neu then begin AmplAnf:=Abs(UkpAlt-Ukp); neu:=false; end; unten:=Not(unten); UkpAlt:=Ukp; end; end; Until i=iend; Writeln('enhancement of the amplitude: ',AmplEnd-AmplAnf:12:6,' Meter. '); Writeln('The machine-power is',P/Pn,' Watt.'); Excel_Datenausgabe('XV-03.DAT'); {position and speed as a function of time} Wait; Wait; End.
fonti: http://philica.com/display_article.php?article_id=207
--------------- The worst enemies of photovoltaics are the building speculators because they build beehives of 15-st...
|